Compumetric Forecasting of Crude Oil Prices

نویسنده

  • M. A. Kaboudan
چکیده

This paper contains short term monthly forecasts of crude oil prices using compumetric methods. Compumetric forecasting methods are ones that use computers to identify the underlying model that produces the forecast. Typically, forecasting models are designed or specified by humans rather than machines. Compumetric methods are applied to determine whether models they provide produce reliable forecasts. Forecasts produced by two compumetric methods – genetic programming and artificial neural networks – are compared and evaluated relative to a random walk type of prediction. The results suggest that genetic programming has advantage over random walk predictions while the neural network forecast proved inferior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models

Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...

متن کامل

Modeling and Forecasting Effects of Crude Oil Price Changes on the US and UK GDP

        This paper proposes a new forecasting model for investigating relationship between the price of crude oil, as an important energy source and GDP of the US, as the largest oil consumer, and the UK, as the oil producer. GMDH neural network and MLFF neural network approaches, which are both non-linear models, are employed to forecast GDP responses to the oil price changes. The resul...

متن کامل

Crude Oil Spot Price Forecasting Based on Multiple Crude Oil Markets and Timeframes

This study proposes a multiple kernel learning (MKL)-based regression model for crude oil spot price forecasting and trading. We used a well-known trend-following technical analysis indicator, the moving average convergence and divergence (MACD) indicator, for extracting features from original spot prices. Additionally, we factored in the possibility that movements of target crude oil prices ma...

متن کامل

Forecasting Long-Term Crude Oil Prices Using a Bayesian Model with Informative Priors

In the long-term, crude oil prices may impact the economic stability and sustainability of many countries, especially those depending on oil imports. This study thus suggests an alternative model for accurately forecasting oil prices while reflecting structural changes in the oil market by using a Bayesian approach. The prior information is derived from the recent and expected structure of the ...

متن کامل

Forecasting of Interval-valued Crude Oil Prices with Autoregressive Conditional Interval Models

Crude oil is a highly strategic commodity. This paper investigates the necessity of using interval data and interval econometric models for crude oil price forecasting. Compared to the traditional point-valued data, interval-valued data in a time period contain much more valuable information which is useful for market participant to make decisions. We develop three autoregressive conditional in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001